Goals:
Introduce the basic features of MathWorlds for the TI-83/84+ families
Introduce the ideas of Mathematical Performance in a Connected SimCalc Classroom
Introduce Participatory Aggregation – Varying Linear Functions By Student
Demonstrate CBR Motion detector (if time)
Watch a video clip of the software in action

Part I: Introducing Piecewise Linear Functions
First we will demonstrate a simple use of the MathWorlds software to give you a flavor of what it can do, then the workshop will be hands-on. These instructions serve as a guide as we work through the various activities.

1. From the APPS menu, Choose 3. MthWrls
 Then 2. Friday Session -- Then 1. Piecewise WarmUp then 2. Piecewise Editing to get a screen similar to

2. Exploring Animation Mode and its SoftKeys
 What do we see? What's going on?
 GO GO RESET \ STEP MARKS NONE \ MARK
 STEP-TIME [Rightmost SoftKey]

3. Introducing Numeric Readout – the STAT key

4. Switching From Animation to Function Edit Mode Using the MODE and DEL Keys
 The Mode Map

5. Making An Exciting Sack Race – Adding Segments & Dragging HotSpots to Make a Piecewise Linear Function Model that can be the basis for a Mathematical Performance

6. Discuss the power of connecting expression with new kinds of mathematical functions for students. Examine slope in a qualitative as well as quantitative way. Wireless connectivity brings every student’s work into a public display for examination and discussion.
Part II: Introducing \(y = mx + b \) Functions and Participatory Aggregation

1. If you had Paused MathWorlds using \(2^{nd}-\text{STO} \), choose the \textit{MthWrlds} App from the APPS menu, which will Resume MathWorlds exactly where you were when you pressed \(2^{nd}-\text{STO} \). To quit the document you are now in, press \(2^{nd}-\text{QUIT} \). This brings you back to the menu. Press UP to get to a higher level and then choose \textbf{3. Linear Functions} and then \textbf{1. StagStartStagFinish}. This should yield a screen similar to

![Graph](image)

If you are starting fresh, then you will need to choose \textbf{2. Friday Session} first.

2. Which object goes with which graph?
3. How fast is A moving? (We can drop MARKS.) And What is A’s formula? (including A’s domain)
4. What is B’s Y-Intercept? What is B’s Initial Position?

5. We now want to edit B’s function so need to press the MODE or DEL key to get to Function Edit Mode. Because B is defined algebraically, there are NO hotspots and there is BalP in the rightmost SoftKey instead of BPOS. To change B’s function, you need to press the PRGM key.

6. Your job is to change B’s formula so that:
 - B starts with initial Position 4 times your Count-Off Number and finishes in a tie with A
7. When you have changed the coefficient of \(X \), the constant term, and domain as needed, then press the STO key to see the graphical result of your changes. Does it fit your expectations? If not, press PRGM and re-edit B’s formula. If it seems OK, press the MODE key to return to Animation Mode and animate your solution to see that it does what you want.

8. When you have the graphs, formulas and motion you want, save your work and Pause MathWorlds so we Can Collect, Display and Discuss your functions!
 \textbf{Press} \(2^{nd}-\text{STO} \) \textbf{and follow the instructions on the} \(2^{nd}-\text{STO} \) \textbf{Handout}

9. We will show what your B functions look like when aggregated on a common graph, and then when animated in Java MathWorlds.

10. \textbf{Note how the special} \(y = 0X + 16 \) \textbf{case is contextualized in the sequence of formulas, the sequence graphs and aggregated motion!}

11. We will illustrate some additional aggregations or repeat with a CBR example if there is time.