Haptic Device and Software Development

- Examined the affordances and constraints of two haptic devices, Sensable PHANTOM Omni® and the Novint Falcon.
- Currently, we are developing activities using the H3D SDK, which combines haptic X3D models and python scripts.

Haptic Embodiment Activities

- A haptic embodiment is a force that is already identifiable to a user (e.g., “breaking point”, “impact”, “balance”).
- Simple experiments to investigate what haptic experiences matter to children and undergraduate students.
- Each activity has a set of predefined variations, which alter the haptic environment (“on the fly” e.g., turn off visualizations, add viscosity, change viewing angle).

Research Questions

- What types of new or enhanced learning experiences can be effectively integrated into elementary and undergraduate classrooms using the proposed technology?
- What are the perceived benefits of haptic technology in addition to visual technologies and how can we investigate and evaluate these benefits?
- How can the technology and associated activities be integrated both practically and effectively into mainstream curriculum?

Broader Impact

- The project aims to allow more accessible roots for a wider range of students to explore mathematical concepts in advanced learning environments, while assessing the practical and educational costs and benefits for wider dissemination.
- We will work with under-represented groups from the University’s mathematics and engineering programs as well as schools with low to middle achievement levels.
- We will build on an existing concentration of Sketchpad users and evaluate the impact of engineering programs as well as schools with low to middle achievement levels.
- How do children express themselves mathematically?

Proof of Concept Study

- Conducted with a 6-year-old and a 13-year-old.
- Examine the possible adaptation of a dynamic geometry activity to incorporate a haptic device.
- Participants interacted with a dynamic triangle by moving a cursor, via the haptic device, to one of the four hotspots (A through D).
- Area of the triangle is proportionally linked to the force-feedback of the device when a hotspot is selected.

Year 1

- Developed and created dynamic geometry curriculum units incorporating haptic devices.
- Investigate the value-added benefits and constraints to learning using haptics and dynamic geometry.

In the Field

- This spring, experiments using the haptic embodiment activities will be implemented in informal and formal settings with elementary and undergraduate students in three economically and ethnically diverse, educational establishments.

Plans for the Future

- Investigate the value-added benefits and constraints to learning using haptics and dynamic geometry.
- Build a prototype of Geometer’s Sketchpad® integrated with Sensable’s PHANTOM Omni®.
- Develop and create dynamic geometry curriculum units incorporating haptic devices.
- Design and run a main study with undergraduate students and early learners using curriculum units.
- Report on the effectiveness, practicality and dissemination possibilities of haptic devices in dynamic geometry curriculum.

Haptic Space

Reference Field

Curriculum Space

Haptic Embodiments

Impact Activities

- **Escape the Shape**: Students are asked to trace the circle with the haptic device, exit the circle, and trace the circle again.
- **Shapes in Things**: Students are asked to trace shapes with the haptic device on both sides of the dividing line.
- **Falling Off**: Students follow three paths on a deformable surface.
- **Sphere Matrix**: Students can hold the stylus in place for 30 seconds while the device “pulses.”

Breaking Point Activities

- **Sensible PHANTOM Omni®**: Students are asked to hold the stylus in place for 30 seconds while the device “pulses.”
- **Novint Falcon**: Students are asked to trace the circle with the haptic device, exit the circle, and trace the circle again.

Dynamic Triangle Activity with a 6-year-old

- Space is filled with a matrix of haptically rendered, spherical objects.
- Students navigate from one corner of the matrix to the opposite corner as quickly as possible.
- During the task, the spheres act as obstacles for the students’ movements.

Sphere Matrix

- Space is filled with a matrix of haptically rendered, spherical objects.
- Students navigate from one corner of the matrix to the opposite corner as quickly as possible.
- During the task, the spheres act as obstacles for the students’ movements.